

NC Math 2

OVERVIEW

FIRST NINE WEEKS NC Math 2 continues a student's study of algebraic and geometric concepts building upon middle school topics and NC Math 1. Students are developing knowledge to reach a higher level of understanding in new and previously learned topics, which include quadratics, exponentials, and systems of equations. New concepts within geometry are introduced including transformations, triangle properties and proofs, and trigonometry. Additionally, students are engaging in topics where they are encouraged to think, write, communicate, and solve real world scenarios, which includes making connections to other subjects.

See the bottom of this document for a detailed description of the assessments as well as the parent/family resources.

UNIT	UNIT	PARENT/FAMILY	NORTH CAROLINA
	DURATION	RESOURCES	STANDARDS
Unit 1: Transformations	Approximately 10	Transformations:	Understanding and applying properties of
Learning Targets:	Days	<u>Video Tutorials</u>	 transformations. NC.M2.F-IF.1: Extend the concept of a function to include geometric transformations.
 I can describe the different types of transformations (translations, reflections, rotations, dilations). I can compare transformations that preserve distance and angle measure (rigid transformations) to those that do not. I can compare transformations that preserve distance and angle measure (rigid transformations) to those that do not. I can describe translations and reflections as functions that use points in the coordinate plane as inputs and produce points as outputs. I can use and interpret function notation for describing translations and reflections (Ex. Write the translation left 5, up 2 as (x,y) > (x-5, y + 2). I can describe a rotation as a function that uses points in the coordinate 		Extra practice	function to include geometric transformations in the plane by recognizing that: o the domain and range of a transformation function f are sets of points in the plane; o the image of a transformation is a function of its pre-image. • NC.M2.F-IF.2: Extend the use of function notation to express the image of a geometric figure in the plane resulting from a translation, rotation by multiples of 90 degrees about the origin, reflection across an axis, or dilation as a function of its pre-image. • NC.M2.G-CO.2: Experiment with transformations in the plane; represent transformations in the plane; compare rigid motions that preserve distance and angle measure (translations, reflections, rotations) to transformations that do not preserve both distance and angle measure (e.g. stretches, dilations). Understand that rigid motions produce congruent figures while dilations produce similar figures. • NC.M2.G-CO.3: Given a triangle, quadrilateral, or regular polygon, describe any reflection or rotation symmetry i.e., actions that carry the figure onto itself. Identify center and angle(s) of rotation symmetry. NC.M2.G-CO.4: Verify experimentally properties of rotations, reflections, and translations in terms of angles, circles, perpendicular lines,

plane as inputs and	parallel lines, and line segments.
produce points as outputs.	 NC.M2.G-CO.5: Given a geometric figure and
•I can use and interpret	a rigid motion, find the image of the figure.
function notation for	Given a geometric figure and its image, specify
describing rotations (Ex. 90	a rigid motion or sequence of rigid motions
degree counterclockwise	that will transform the pre-image to its image.
rotation is $(x, y) > (-y, x)$.	NC.M2.G-CO.6: Determine whether two
•I can dilate a point or line	figures are congruent by specifying a rigid
segment with a given	motion or sequence of rigid motions that will
center and a scale factor,	transform
including notation (Ex.	one figure onto the other.
Dilation of $(x, y) > (2x, 2y)$.	 NC.M2.G-SRT.1: Understand similarity in
• I can define a translation	terms of similarity transformations. Verify
to be a transformation that	experimentally the properties of dilations with
shifts points a specified distance along a line	given center and scale factor:
parallel to a specified axis	a. When a line segment passes through the
(either right/left or	center of dilation, the line segment and its
up/down).	image lie on the same line. When a line
•I can define a reflection to	segment does not pass through the center of
be a transformation that	dilation, the line segment and its image are
moves a figure along a line	parallel.
perpendicular to a line of	b. Verify experimentally the properties of
symmetry an equal	dilations with given center and scale factor:
distance from it.	The length of the image of a line segment is
•I can describe the	equal to the length of the line segment
reflections that will carry a	multiplied by the scale factor.
figure onto itself.	c. The distance between the center of a
•I can see that the line of	dilation and any point on the image is equal to
reflection is equidistant	the scale factor multiplied by the distance
from points on the pre-	between the dilation center and the
image and image.	corresponding point on the pre-image.
•I can reflect figures over	d. Dilations preserve angle measure
both vertical and horizontal	
lines that are not the axes	
(i.e. y = 2 or x = -5).	
•I can apply multiple	
reflections, rotations and	
translations to any figure or	
point (using graph paper,	
transparency paper, and	
technology).	
•I can define a rotation to	
be a transformation that	
moves a figure along an arc	
with a specified angle	
about a specified center.	
•I can describe the	
rotations that will carry a	
figure onto itself.	

•I can predict the effect of			
a rigid transformation on a			
given figure.			
•I can dilate basic polygon			
with a given center and a			
scale factor.			
 I can recognize that lines 			
segments on the pre-image			
and image of a dilation are			
parallel.			
 I can identify the 			
transformations that will			
graph a given pre-image			
onto its image (and			
reverse).			
I can perform a			
combination of			
transformations.			
Unit 2: Quadratics	Approximately 20	Polynomials and	Interpret, compare, and analyze quadratic
	Days	Quadratics:	functions in different representations.
			NC.M2.A.SS.E.1a: Interpret expressions that
Learning Targets		Video Tutorials	represent a quantity in terms of its context.
•I can perform operations			a. Identify and interpret parts of a quadratic,
with polynomials		Extra practice	square root, inverse variation, or right triangle
•I can identify the vertex,			trigonometric expression, including terms,
axis of symmetry, x and y-			factors, coefficients, radicands, and exponents.
intercepts, and domain of a			NC.M2.A.SS.E.1b: Interpret expressions that
quadratic function from the			represent a quantity in terms of its context.
graph.			b. Interpret quadratic and square root
•I can identify the vertex, y-			expressions made of multiple parts as a
intercept, and whether the			combination of single entities to give meaning
parabola opens up or down			in terms
from the from standard or			of a context.
vertex form of the equation			NC.M2.F.IF.4: Interpret functions that arise in
of the quadratic.			applications in terms of context. Interpret key
•I can shift a quadratic			features of graphs, tables, and verbal
graph both horizontally and			descriptions in context to describe functions
vertically and describe how			that arise in applications relating two
these shifts affect the			quantities, including: domain and range, rate
equation.			of change,
• I can factor using:			symmetries, and end behavior.
•GCF			
•Grouping			NC.M2.F.IF.7: Analyze functions using different
• Difference of Squares			representations. Analyze quadratic, square
•I can solve a quadratic by			root, and inverse variation functions by
factoring when the leading			generating different representations, by hand
coefficient is one and			in simple cases and using technology for more
explain the steps.			complicated cases, to show key features,

 Factor (and solve) when 		including: domain and range; intercepts;
a>1.		intervals where the function is increasing,
 I can solve a basic 		decreasing, positive, or negative; rate of
quadratic using algebra (ex.		change;
X2 - 20 = 5) and explain the		maximums and minimums; symmetries; and
steps.		end behavior.
 I can solve a quadratic by 		 NC.M2.F.IF.9: Analyze functions using
using the quadratic		different representations.
formula.		Compare key features of two functions (linear,
 I can recognize when a 		quadratic, square root, or inverse variation
quadratic has no real		functions) each with a different representation
solution.		(symbolically, graphically, numerically in tables,
•I can solve a quadratic		or by verbal descriptions).
equation with complex.		 NC.M2.A.REI.7: Use tables, graphs, and
solutions as a±bi for real		algebraic methods to approximate or find
numbers a and b.		exact solutions of systems of linear and
•I understand i ² = -1,		quadratic
therefore i = √-1.		equations, and interpret the solutions in terms
•I can write a quadratic in		of a context.
standard form in an		Solve quadratic equations algebraically.
equivalent form to reveal		• NC.M2.A.APR.1: Perform operations on
the vertex of the function		polynomials. Extend the understanding that
by completing the square.		operations with polynomials are comparable to
•I can see the relationship		operations with integers by adding,
between completing the		subtracting, and multiplying polynomials.
square and the quadratic		• NC.M2.N-CN.1: Know there is a complex
formula.		number i such that , and every complex
•I can use completing the		number has the form where and are $i - 12$
square to solve a quadratic		= a + b a b i
function.		real numbers.
•I can interpret the		• NC.M2.A.SSE.3: Interpret the structure of
equation and graph of a		expressions. Write an equivalent form of a
quadratic that models a		quadratic expression by completing the square,
real world situation (ex.		where is an integer of a quadratic expression, ,
Projectile motion, area,		to reveal the maximum or minimum value of
profit).		the function the expression defines.
•I can solve and interpret		NC.M2.A.REI.4a: Solve for all solutions of
the solutions of a quadratic		quadratic equations in one variable.
in context.		a. Understand that the quadratic formula is the
•I can describe an		generalization of solving ax2+bx+c by using the
appropriate domain of a		process of completing the square.
quadratic function in		NC.M2.A.REI.4b: Solve for all solutions of
context.		quadratic equations in one variable.
•I can explain the effect of		b. Explain when quadratic equations will have
a shift in context.		non-real solutions and express complex
		solutions as a+bi for real numbers a and b.
 I can use the regression feature of the calculator to 		
		NC.M2.A.REI.1: Understand solving
determine a quadratic		equations as a process of reasoning and
equation for a given table		explain the reasoning. Justify a chosen solution
of values.		method and

•I can find an equation of			each step of the solving process for quadratic,
best fit for data in a real			
world context.			square root and inverse variation equations
			using mathematical reasoning.
•I can compare and			• NC.M2.F.IF.8: Use equivalent expressions to
contrast the key features			reveal and explain different properties of a
(vertex, y-int, zeros, etc) of			function by developing and using the process
two or more functions			of
given in different forms (i.e.			completing the square to identify the zeros,
Given a graph of one and			extreme values, and symmetry in graphs and
the algebraic expression for			tables representing quadratic functions, and
the other, identify which			interpret these in terms of a context.
has the larger maximum,			
use the table of one			Transform and model quadratic functions.
function to find an			 NC.M2.F.BF.1: Write a function that
equation and compare).			describes a relationship between two
equation and compare).			quantities by building quadratic functions with
			real solution(s)
			and inverse variation functions given a graph, a
			description of a relationship, or ordered pairs
			(include reading these from a table).
			• NC.M2.F.BF.3: Understand the effects of the
			graphical and tabular representations of a
			linear, quadratic, square root, and inverse
			variation function f with $k \cdot f(x)$, $f(x) + k$, $f(x+k)$
			for specific values of k (both positive and
			negative).
			 NC.M2.A.CED.1: Create equations and
			inequalities in one variable that represent
			quadratic, square root, inverse variation, and
			right
			triangle trigonometric relationships and use
			them to solve problems.
			• NC.M2.A.CED.2: Create and graph equations
			in two variables to represent quadratic, square
			root and inverse variation relationships
			between quantities.
			 NC.M2.A.CED.3: Create systems of linear,
			quadratic, square root, and inverse variation
			equations to model situations in context.
Unit 3: Square Root &	Approximately 15	Square roots and	Extend and apply the properties of rational
Inverse variation Functions,	Days	exponents:	exponents.
Systems of equations			• NC.M2.N-RN.1: Explain how expressions with
		Khan Academy tutorials	rational exponents can be rewritten as radical
Learning Targets:		and practice	expressions.
• I can rewrite expressions			• NC.M2.N-RN.2: Rewrite expressions with
involving radicals and		Systems of equations:	radicals and rational exponents into equivalent
rational exponents using		systems of equations.	expressions using the properties of exponents.
the properties of		Extra practice	 NC.M2.N-RN.3: Use the properties of rational
		Extra practice	
exponents.		Video tutoriala	and irrational numbers to explain why:
		Video tutorials	• the sum or product of two rational numbers is
			rational;

•I can identify and provide		the sum of a rational number and an
examples of rational and		irrational number is irrational;
irrational numbers.		the product of a nonzero rational number and
•I can explain and provide		an irrational number is irrational.
an example for the		NC.M2.A.SS.E.1a: Interpret expressions that
following:		represent a quantity in terms of its context.
•The sum or product of two		a. Identify and interpret parts of a quadratic,
rational numbers is		square root, inverse variation, or right triangle
rational.		trigonometric expression, including terms,
•The sum of a rational		factors, coefficients, radicands, and exponents.
number and an irrational		 NC.M2.A.SS.E.1b: Interpret expressions that
number is irrational.		represent a quantity in terms of its context.
•The product of a nonzero		b. Interpret quadratic and square root
rational number and an		expressions made of multiple parts as a
irrational number is		combination of single entities to give meaning
irrational.		in terms
 I can determine the 		of a context.
domain and range of		 NC.M2.A.CED.1: Create equations and
square root functions.		inequalities in one variable that represent
 I can solve square root 		quadratic, square root, inverse variation, and
functions that model		right
situations in context.		triangle trigonometric relationships and use
 I can write equations for 		them to solve problems.
direct, inverse, and joint		NC.M2.A.CED.2: Create and graph equations in
variation		two variables to represent quadratic, square
 I can determine what type 		root and inverse variation relationships
of variation an equation		between quantities.
represents situations.		 NC.M2.F-BF.3: Understand the effects of the
 I can create and solve 		graphical and tabular representations of a
systems of linear,		linear, quadratic, square root, and inverse
quadratic, square root, and		variation function f with $k \cdot f(x)$, ,) $f(x) + k f(x + x)$
inverse variation equations		k) for specific values of k (both positive and
to model situations in		negative).
context.		 NC.M2.A.CED.3: Create systems of linear,
 I can solve a square 		quadratic, square root, and inverse variation
function with radicals on		equations to model situations in context.
one or both sides of the		 NC.M2.A.REI.1: Understand solving
equation.		equations as a process of reasoning and
 I can check to see if the 		explain the reasoning. Justify a chosen solution
solutions are extraneous.		method and
 I can solve direct, inverse, 		each step of the solving process for quadratic,
and joint variation		square root and inverse variation equations
equations, including those		using mathematical reasoning.
given in context.		 NC.M2.A-REI.2: Solve and interpret one
 I can graph a simple 		variable inverse variation and square root
square root function by		equations arising from a context, and explain
hand.		how
 I can shift a square root 		extraneous solutions may be produced.
function both horizontally		 NC.M2.A-REI.11: Extend the understanding
and vertically.		that the x -coordinates of the points where the
		graphs of two square root and/or inverse

•I can solve a square root		variation equations $y = f(x)$ and $y = g(x)$
function that results in a		intersect are the solutions of the equation f(x)
quadratic.		= g(x), and approximate solutions using
•I can solve a simple		graphing
rational function.		technology or successive approximations with
•I can solve a rational		a table of values.
function that results in a		• NC.M2.F.IF.4: Interpret functions that arise in
quadratic.		applications in terms of context. Interpret key
 I can solve a system of 		features of graphs, tables, and verbal
equations graphically, both		descriptions in context to describe functions
by hand and using		that arise in applications relating two
technology.		quantities, including: domain and range, rate
 I can solve a system of 		of change,
linear equations using		symmetries, and end behavior.
substitution		 NC.M2.F.IF.7: Analyze functions using
 Teachers may choose to 		different representations. Analyze quadratic,
review elimination, but it		square root, and inverse variation functions by
will not work with mixed		generating different representations, by hand
systems.		in simple cases and using technology for more
 I can solve a system of 		complicated cases, to show key features,
equations that include		including: domain and range; intercepts;
linear/quadratic,		intervals where the function is increasing,
quadratic/quadratic,		decreasing, positive, or negative; rate of
linear/square root, and		change;
square root/square root		maximums and minimums; symmetries; and
graphically, using		end behavior.
technology.		 NC.M2.F.IF.9: Analyze quadratic, square root,
 I can solve a system of 		and inverse variation functions by generating
equations that include		different representations, by hand in simple
linear/quadratic,		cases and using technology for more
quadratic/quadratic,		complicated cases, to show key features,
linear/square root, and		including: domain and range; intercepts;
square root/square root		intervals where
using substitution.		the function is increasing, decreasing, positive,
		or negative; rate of change; maximums and
		minimums; symmetries; and end behavior.

NC Math 2

OVERVIEW

SECOND NINE WEEKS

NC Math 2 continues a student's study of algebraic and geometric concepts building upon middle school topics and NC Math 1. Students are developing knowledge to reach a higher level of understanding in new and previously learned topics, which include quadratics, exponentials, and systems of equations. New concepts within geometry are introduced including transformations, triangle properties and proofs, and trigonometry. Additionally, students are engaging in topics where they are encouraged to think, write, communicate, and solve real world scenarios, which includes making connections to other subjects.

UNIT	UNIT	PARENT/FAMILY	NORTH CAROLINA
	DURATION	RESOURCES	STANDARDS
Unit 4: Similarity &	Approximately 12	Similarity and Right	Understand similarity through transformations,
Congruence, Angles &	Days	Triangles:	including dilations, and use the properties of
Triangles			similarity
		Video tutorials	to solve problems.
Learning Targets:			• NC.M2.G-CO.9: (first three bullets) Prove
• I can define and name		Extra practice	theorems about lines and angles and use them
line segments, rays, and			to prove relationships in geometric figures
angles.		Triangles and Congruence:	including:
 I can identify and solve 			 Vertical angles are congruent.
types of angles including		<u>Video tutorials</u>	 When a transversal crosses parallel lines,
adjacent, vertical, linear			alternate interior angles are congruent.
pairs, complementary,		Extra practice	 When a transversal crosses parallel lines,
supplementary,			corresponding angles are congruent.
perpendicular.			• NC.M2.G-SRT.1: Understand similarity in terms
•I can prove that the sum			of similarity transformations. Verify
of the interior angles in a			experimentally the properties of dilations with
triangle is 180 degrees.			given
 I can solve for missing 			center and scale factor:
angles in a triangle			b. Verify experimentally the properties of
numerically and			dilations with given center and scale factor: The
algebraically.			length of the image of a line segment is
 I can recognize that an 			equal to the length of the line segment
exterior angle of a			multiplied by the scale factor.
triangle is equal to the			c. The distance between the center of a dilation
sum of its remote interior			and any point on the image is equal to the scale
angles.			factor multiplied by the distance
 I can identify the types 			between the dilation center and the
of triangles.			corresponding point on the pre-image.
 I can recognize that the 			d. Dilations preserve angle measure.
base angles of an			 NC.M2.G-SRT2a,b: Understand similarity in
isosceles triangle are			terms of transformations.
congruent.			a. Determine whether two figures are similar by
 I can identify the 			specifying a sequence of transformations that
midsegments of a			will transform one figure into the other.
triangle and recognize			
that they are parallel to			

the 3rd side and half the	b. Use the properties of dilations to show that
length.	two triangles are similar when all corresponding
•I can identify parallel	pairs of sides are proportional and all
lines and a transversal	corresponding pairs of angles are congruent.
that intersects them.	 NC.M2.G-SRT3: Understand similarity in terms
 I can identify interior, 	of transformations. Use transformations (rigid
exterior, alternate, and	motions and dilations) to justify the AA
consecutive angles.	criterion for triangles similarity,
•I can determine if pairs	 NC.M2.G-SRT4: (first bullet) Prove theorems
of angles are congruent	involving similarity. Use similarity to solve
or supplementary based	problems and to prove theorems about
on theorems	triangles.
(corresponding, alternate	 A line parallel to one side of a triangle divides
interior, alternate	the other two sides proportionally and its
exterior, consecutive	converse.
interior).	 NC.M2.G-CO10: (fourth bullet) Prove
 I can recognize that 	theorems about triangles and use them to prove
points are on a	relationships in geometric figures including:
perpendicular bisector of	 The segment joining the midpoints of two
a line segment if and only	sides of a triangle is parallel to the third side and
if they are equidistant	half the length.
from the endpoints of the	
segment.	Understand congruency through rigid motion
 I can show that two 	transformations and use the properties of
triangles are congruent if	congruency to
and only if their	solve problems.
corresponding parts are	 NC.M2.G-CO.6: Determine whether two
congruent.	figures are congruent by specifying a rigid
 I can justify the ASA, 	motion or sequence of rigid motions that will
SAS, AAS, SSS, and HL	transform
postulates for triangle	one figure onto the other.
congruence.	 NC.M2.G-CO7: Use the properties of rigid
 I can use the above 	motions to show that two triangles are
postulates to determine	congruent if and only if corresponding pairs of
if two triangles are	sides and
congruent.	corresponding pairs of angles are congruent.
 I can identify 	 NC.M2.G-CO8: Use congruence in terms of
corresponding parts of	rigid motions. Justify the ASA, SAS, and SSS
triangles that would	criteria for triangle congruence. Use criteria for
complete the congruence	triangle congruence (ASA, SAS, SSS, HL) to
using a given postulate.	determine whether two triangles are congruent.
 I can use congruent 	 NC.M2.G-CO.9: (fourth and fifth bullets)Prove
triangles to justify why	theorems about lines and angles and use them
the bisector of an angle is	to prove relationships in geometric figures
equidistant from the	including:
sides of the angle.	 Points are on a perpendicular bisector of a line
 I can use theorems 	segment if and only if they are equidistant from
about angles, sides, and	the endpoints of the segment.
triangles along with the	 Use congruent triangles to justify why the
triangle postulates to	bisector of an angle is equidistant from the sides
write a 2-column proof.	of the angle.
L I	

		-	-
•I can use CPCTC to prove			NC.M2.G-CO10: (third bullet) Prove theorems
that angles or sides of			about triangles and use them to prove
triangles are congruent.			relationships in geometric figures including:
 I can determine if two 			 The base angles of an isosceles triangle are
triangles are similar using			congruent.
the AA theorem.			
 I can justify the AA 			
criterion for triangle			
similarity.			
 I can prove that figures 			
are similar by showing			
their sides have the same			
ratio.			
 I can apply the side 			
splitter theorem to			
similar triangles			
 I can relate similar 			
figures back to dilations.			
Unit 5: Trigonometry	Approximately 13	Similarity and Right	Understand, prove, and use properties of
(Solving Right Triangles)	Days	Triangles:	triangles to solve problems.
			 NC.M2.G.CO.10: (first and second bullets)
Learning Targets:		Video tutorials	Prove theorems about triangles and use them to
 I can simplify radical 			prove relationships in geometric figures
expressions using perfect		Extra practice	including:
squares or factor trees.			• The sum of the measures of the interior angles
 I can use Pythagorean 			of a triangle is 180 degrees.
theorem to solve for			• An exterior angle of a triangle is equal to the
missing sides in a right			sum of its remote interior angles.
triangle.			NC.M2.G.SRT.4: (second bullet) Use similarity
 I can use special right 			to prove theorems about triangles. Use
triangles (45-45-90) to			theorems about triangles to prove relationships
solve for a missing side.			in
•I can derive the			geometric figures.
relationships in a 30-60-			 Use the Pythagorean Theorem.
90 triangle.			Use proportional reasoning to develop
 I can use special right 			relationships between corresponding parts of
triangles (30-60-90) to			similar triangles.
solve for a missing side.			
•I can solve problems			Use these relationships to solve problems.
involving multiple			NC.M2.G-SRT.12: Define trigonometric ratios
triangles with missing			and solve problems involving right triangles.
sides using special right			Develop properties of special right triangles
triangles.			(45-45-90 and 30-60-90) and use them to solve
•I can identify the sides			problems.
of right triangles as they			• NC.M2.G.SRT.6: Verify experimentally that the
relate to an acute angle			side ratios in similar right triangles are
(opposite, adjacent,			properties of the angle measures in the triangle,
hypotenuse).			due
•I can define the three			to the preservation of angle measure in
trigonometric ratios by			similarity. Use this discovery to develop
comparing the ratios of			

	1		
corresponding sides of			definitions of the trigonometric ratios for acute
similar right triangles in			angles.
relation to an acute			 NC.M2.A.SSE.1a: Identify and interpret parts
angle.			of a quadratic, square root, inverse variation, or
•I can recognize that in			right triangle trigonometric expression,
similar right triangles the			including terms, factors, coefficients, radicands,
sine, cosine, and tangent			and exponents.
ratios of corresponding			• NC.M2.A.CED.1: Create equations and
angles are constant.			inequalities in one variable that represent
•I can use trigonometric			quadratic, square root, inverse variation, and
ratios to solve for a			right
missing side in a right			triangle trigonometric relationships and use
triangle.			them to solve problems.
•I can use inverse trig			 NC.M2.G.SRT.8: Use trigonometric ratios and
ratios to solve for a			-
			the Pythagorean Theorem to solve problems
missing angle in a right			involving right triangles in terms of a context.
triangle.			
•I can identify angles of			
elevation and depression			
in a real world situation.			
•I can use right triangle			
trig to model and solve			
real world applications.			
•I can interpret the			
solution to a real world			
application including unit			
and evaluating			
reasonability.		A	
Unit 6: Probability	Approximately 10	Probability:	Understand, explain, and use conditional
	days		probabilities, the addition rule for probabilities,
Learning Targets:		Extra practice	and the
 I can identify events, 			multiplication rules for probabilities.
outcomes and sample		<u>Video tutorials</u>	 NC.M2.S.IC.2: Use simulation to determine
spaces for a given			whether the experimental probability generated
situation			by sample data is consistent with the
(Ex. What is the sample			theoretical probability based on known
space for rolling a die?			information about the population.
(Ex. What is the sample			 NC.M2.S.CP.1: Describe events as subsets of
space for randomly			the outcomes in a sample space using
selecting one letter from			characteristics of the outcomes or as unions,
the word			intersections and complements of other events.
MATHEMATICS?)(Ex.			 NC.M2.S.CP.3a: Develop and understand
Describe different			independence and conditional probability.
subsets of outcomes for			a. Use a two-way table to develop an
rolling a die using a single			understanding of the conditional probability of a
category or			given B (written P(A B)) as the likelihood that A
characteristic.)			will occur given that B has occurred. That is,
 I can calculate basic 			P(A B) is the fraction of event B's outcomes that
probabilities from a			also belong to event A.
situation or table			 NC.M2.S.CP.3b: Develop and understand
			independence and conditional probability.

(probability = b. Understand that event A is independen	
favorable/total) event B if the probability of event A does	ot
• I can explain the change in response to the occurrence of	
differences between event B. That is P(A B) = P(A).	
experimental and • NC.M2.S.CP.4: Represent data on two	
theoretical probability, categorical variables by constructing a two	-
and how they are related frequency table of data. Interpret the two	-
through the law of large table as a sample space to calculate condi	ional,
numbers joint, and marginal probabilities. Use the t	able to
(Ex. Sadie flipped a coin decide if events are independent.	
10 times and got the • NC.M2.S.CP.5: Recognize and explain th	2
following results: T, H, T, concepts of conditional probability and	
T, H, H, H, H, H, H. Her independence in everyday language and	
math partner Harold everyday	
thinks that the next flip is situations.	
going to result in tails • NC.M2.S.CP.6: Find the conditional prob	ability
because there have been of A given B as the fraction of B's outcome	s that
so many heads in a row. also belong to A, and interpret the answer	
Do you agree? Explain in context.	
why or why not. • NC.M2.S.CP.7: Apply the Addition Rule,	A or
•I can describe events as B) = P(A) + P(B) - P(A and B), and interpret	the
unions, intersections, and answer in context.	
complements, disjoint	
(Ex. Describe the Multiplication Rule P(A and B) = P(A)P(A B	, and
following subset of interpret the answer in context. Include the	e case
outcomes for choosing where A and B are independent: P(A and B) =
one card from a standard P(A)P(B)	
deck of cards as the	
intersection of two	
events: {queen of hearts,	
queen of diamonds – so	
Queen & Red is the	
intersection of these two	
events}.	
•I can use a Venn	
Diagram to represent	
outcomes and determine	
probabilities for unions,	
intersections, and	
complements of events	
•I can find the probability	
of the union of two	
events using the formula	
P(A or B) = P(A) + P(B) -	
P(A and B) (Ex. Given the	
situation of drawing a	
card from a standard	
deck of cards, calculate	
the probability of the	
following:	

	1	
 drawing a red card or a 		
king		
•drawing a ten or a spade		
 drawing a four or a 		
queen		
 drawing a black jack or a 		
club		
 drawing a red queen or 		
a spade)		
 I can describe what it 		
means for two events to		
be independent. (Ex. Felix		
is a good chess player		
and a good math student.		
Do you think that the		
events "being good at		
playing chess" and "being		
a good math student" are		
independent or		
dependent? Justify your		
answer.		
 I can determine if two 		
events are independent if		
the probability of A and B		
occurring together is the		
product of their		
probabilities P(A and B) =		
P(A)P(B).		
•(Ex. For the situation of		
drawing a card from a		
standard deck of cards,		
consider the two events		
of "draw a diamond" and		
"draw an ace."		
Determine if these two		
events are independent.		
•I can create a two-way		
table from a set of data.		
•I can explain conditional		
probabilities in context of		
a situation.		
•I can determine		
conditional probabilities		
from a two-way table.		
•I can find conditional		
probabilities using the		
formula $P(A B) = P(A and B)$		
B)/P(B).		
•I can find the		
conditional probability of		
A given B as the fraction		

 of B's outcomes that also

 belong to A, and interpret

 the answer in context.

Parent/Family Materials

These materials are designed to give parents support for each lesson in our NC Math 2 units. There are video tutorials as well as additional problems and answers for the topics that can be used for extra practice.